# [Tex/LaTex] Aligning the right hand side of multiline equations

alignamsmathequations

I would like to align the RHS of the multiline equations and assign equation number for whole as one.

\begin{multline*}
\frac{\partial P(y_{i}\succ0)} {\partial z_{ij}}=\tfrac {a(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}a^{2}(1-\tau^{2})^{2}\left(z_{1i}\prime\gamma_{1j}\right)^{2}}\\
\Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-a\tau \left(z_{1i}\prime\gamma_{1j}\right)\right)\gamma_{1j}+\tfrac {b(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}b^{2j}(1-\tau^{2})^{2}\left(\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)^{2}}\\
\Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau}\\
\end{multline*}

\begin{multline*}
=\phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-a\tau z_{1i}\prime\gamma_{1j}\right)\gamma_{1j}\\
+\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau}
\end{multline*}

\begin{multline*}
=\phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(\tfrac{\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-\tau z_{1i}\prime\gamma_{1}}{(1-\tau^{2})^{1/2}}\right)\gamma_{1j}\\
+\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(\tfrac{z_{1i}\prime\gamma_{1j}-\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}}{(1-\tau^{2})^{1/2}}\right)\tfrac{\gamma_{2j}}{\tau}
\end{multline*}


How do I do that?. I couldn't get it using align

\documentclass[preview,border=12pt]{standalone}
$$\begin{split} \frac{\partial P(y_{i}\succ0)} {\partial z_{ij}} &= \! \begin{multlined}[t][10cm] \tfrac{a(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}a^{2}(1-\tau^{2})^{2}\left(z_{1i}\prime\gamma_{1j}\right)^{2}} \Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma} -a\tau \left(z_{1i}\prime\gamma_{1j}\right)\right) \gamma_{1j}\\ +\tfrac {b(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}b^{2j}(1-\tau^{2})^{2}\left(\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)^{2}}\\ \Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau} \end{multlined}\\ &= \! \begin{multlined}[t][10cm] \phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-a\tau z_{1i}\prime\gamma_{1j}\right)\gamma_{1j}\\ +\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau} \end{multlined}\\ &= \! \begin{multlined}[t][10cm] \phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(\tfrac{\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-\tau z_{1i}\prime\gamma_{1}}{(1-\tau^{2})^{1/2}}\right)\gamma_{1j}\\ +\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(\tfrac{z_{1i}\prime\gamma_{1j}-\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}}{(1-\tau^{2})^{1/2}}\right)\tfrac{\gamma_{2j}}{\tau} \end{multlined} \end{split}$$