[Tex/LaTex] Aligning the right hand side of multiline equations

alignamsmathequations

I would like to align the RHS of the multiline equations and assign equation number for whole as one.

\begin{multline*}
\frac{\partial P(y_{i}\succ0)} {\partial z_{ij}}=\tfrac {a(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}a^{2}(1-\tau^{2})^{2}\left(z_{1i}\prime\gamma_{1j}\right)^{2}}\\
\Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-a\tau \left(z_{1i}\prime\gamma_{1j}\right)\right)\gamma_{1j}+\tfrac {b(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}b^{2j}(1-\tau^{2})^{2}\left(\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)^{2}}\\
\Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau}\\
\end{multline*}

\begin{multline*}
=\phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-a\tau z_{1i}\prime\gamma_{1j}\right)\gamma_{1j}\\
+\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau}
\end{multline*}

\begin{multline*}
=\phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(\tfrac{\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-\tau z_{1i}\prime\gamma_{1}}{(1-\tau^{2})^{1/2}}\right)\gamma_{1j}\\
+\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(\tfrac{z_{1i}\prime\gamma_{1j}-\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}}{(1-\tau^{2})^{1/2}}\right)\tfrac{\gamma_{2j}}{\tau}
\end{multline*}

How do I do that?. I couldn't get it using align

Best Answer

\documentclass[preview,border=12pt]{standalone}
\usepackage[a4paper,margin=1cm]{geometry}
\usepackage{mathtools}
\begin{document}
\abovedisplayskip=0pt\relax% don't use this line in your production (egreg does not like this)
\begin{equation}
\begin{split}
\frac{\partial P(y_{i}\succ0)} {\partial z_{ij}}
&=
\!
\begin{multlined}[t][10cm]
\tfrac{a(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}a^{2}(1-\tau^{2})^{2}\left(z_{1i}\prime\gamma_{1j}\right)^{2}}
\Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}
-a\tau \left(z_{1i}\prime\gamma_{1j}\right)\right)
\gamma_{1j}\\
+\tfrac {b(1-\tau^{2})^{1/2}}{(2 \pi)^{1/2}} e^{-\tfrac{1}{2}b^{2j}(1-\tau^{2})^{2}\left(\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)^{2}}\\
\Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau}
\end{multlined}\\
&=
\!
\begin{multlined}[t][10cm]
\phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(b\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-a\tau z_{1i}\prime\gamma_{1j}\right)\gamma_{1j}\\
+\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(a\left(z_{1i}\prime\gamma_{1j}\right)-b\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}\right)\tfrac{\gamma_{2j}}{\tau}
\end{multlined}\\
&=
\!
\begin{multlined}[t][10cm]
\phi\left(z_{1i}\prime\gamma_{1}\right)\Phi\left(\tfrac{\tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}-\tau z_{1i}\prime\gamma_{1}}{(1-\tau^{2})^{1/2}}\right)\gamma_{1j}\\
+\phi\left(\tfrac{z_{2i}\prime\gamma_{2}}{\sigma}\right)\Phi\left(\tfrac{z_{1i}\prime\gamma_{1j}-\tau \tfrac{z_{2i}\prime\gamma_{2j}}{\sigma}}{(1-\tau^{2})^{1/2}}\right)\tfrac{\gamma_{2j}}{\tau}
\end{multlined}
\end{split}
\end{equation}
\end{document}

enter image description here

For better resolution click this