[Physics] How to solve this quantum mechanical “paradox”

heisenberg-uncertainty-principlemomentumquantum mechanicswavefunction

Let a (free) particle move in $[0,a]$ with cyclic boundary condition $\psi(0)=\psi(a)$.
The solution of the Schrödinger-equation can be put in the form of a plane wave. In this state the standard deviation of momentum is $0$, but $\sigma_x$ must be finite. So we find that $\sigma_x\sigma_p=0$. Is something wrong with the uncertainty principle?

Best Answer

This is what happens if one cares not for the subtlety that quantum mechanical operators are typically only defined on subspaces of the full Hilbert space.

Let's set $a=1$ for convenience. The operator $p =-\mathrm{i}\hbar\partial_x$ acting on wavefunctions with periodic boundary conditions defined on $D(p) = \{\psi\in L^2([0,1])\mid \psi(0)=\psi(1)\land \psi'\in L^2([0,1])\}$ is self-adjoint, that is, on the domain of definition of $p$, we have $p=p^\dagger$, and $p^\dagger$ admits the same domain of definition. The self-adjointness of $p$ follows from the periodic boundary conditions killing the surface terms that appear in the $L^2$ inner product $$\langle \phi,p\psi\rangle - \langle p^\dagger \phi,\psi\rangle = \int\overline{\phi(x)}\mathrm{i}\hbar\partial_x\psi(x) - \overline{\mathrm{i}\hbar\partial_x\phi(x)}\psi(x) = 0$$ for every $\psi\in D(p)$ and every $\phi\in D(p^\dagger) = D(p)$, but not for $\phi$ with $\phi(0)\neq\phi(1)$.

Now, for the question of the commutator: the multiplication operator $x$ is defined on the entire Hilbert space, since for $\psi\in L^2([0,1])$ $x\psi$ is also square-integrable. For the product of two operators $A,B$, we have the rule $$ D(AB) = \{\psi\in D(B)\mid B\psi\in D(A)\}$$ and $$ D(A+B) = D(A)\cap D(B)$$ so we obtain \begin{align} D(px) & = \{\psi\in L^2([0,1])\mid x\psi\in D(p)\} \\ D(xp) & = D(p) \end{align} and $x\psi\in D(p)$ means $0\cdot \psi(0) = 1\cdot\psi(1)$, that is, $\psi(1) = 0$. Hence we have $$ D(px) = \{\psi\in L^2([0,1])\mid \psi'\in L^2([0,1]) \land \psi(1) = 0\}$$ and finally $$ D([x,p]) = D(xp)\cap D(px) = \{\psi\in L^2([0,1])\mid \psi'\in L^2([0,1])\land \psi(0)=\psi(1) = 0\}$$ meaning the plane waves $\psi_{p_0}$ do not belong to the domain of definition of the commutator $[x,p]$ and you cannot apply the naive uncertainty principle to them. However, for self-adjoint operators $A,B$, you may rewrite the uncertainty principle as $$ \sigma_\psi(A)\sigma_\psi(B)\geq \frac{1}{2} \lvert \langle \psi,\mathrm{i}[A,B]\rangle\psi\rvert = \frac{1}{2}\lvert\mathrm{i}\left(\langle A\psi,B\psi\rangle - \langle B\psi,A\psi\rangle\right)\rvert$$ where the r.h.s. and l.h.s. are now both defined on $D(A)\cap D(B)$. Applying this version to the plane waves yields no contradiction.