# MATLAB: Custom Image Spatial Filtering Code using loops not giving the same result as using the built in imtransform() function

homeworkimage processingImage Processing ToolboxMATLABspatial filtering

Hi, I'm working on trying to create a custom code to apply spatial filtering without Matlab functions for school. So I created a custom convolution function to be applied to an image and a kernel but the resultant image looks different for both of these images and I'm hitting a wall with why. My custom code is more blurred and I think my convolution function is incorrect but to me, it looks like I'm applying the equation correctly.
Any help would be appreciated. Thanks.
 clear all; close all; clc; % Read images 1 and 2 im = imread('img1.png'); A = rgb2gray(im);    % Read KernelsKernel_1 = (1/9)*ones(3);Kernel_2 = (1/49)*ones(7);Kernel = Kernel_2;          % Set current kernel img_out = convolution(A,Kernel);   %Perform convolution on image and selected kernel img_out_filter = imfilter(A,Kernel,'same','conv'); %%Display output imagessubplot(1,3,1); imshow(A); title('Original') subplot(1,3,2); imshow(img_out,[]); title('Custom Created Function')subplot(1,3,3); imshow(img_out_filter); title('Matlab imfilter Function')    %%Rotate input matrixfunction rot_mat = rot(mat,theta)    theta = -25 *2*pi/360;    R = [cos(theta)  sin(theta) 0;         -sin(theta) cos(theta) 0;         0           0          1];    rot_mat = mat*R;end    %%Perform convolution on image and kernelfunction B = convolution(A, k)    [ky, kx] = size(k);             % Read kernel size    im_pad = padarray(A, [kx ky]);  % Pad original image    [y, x] = size(im_pad);          % Read image size    B = zeros(x,y);         % Create empty matrix to store output image    kr = rot90(k);          % Rotates kernel 180 deg for convolution    kr = rot90(kr);    for i=(1+ky):(y-ky)         % index through each image row        for j=(1+kx):(x-kx)     % index through each image pixel                    neigh = im_pad(i-floor(ky/2):i+floor(ky/2), j-floor(kx/2):j+floor(kx/2));   % Create local neighborhood of image            accumulator = 0;             for u=1:ky      % index through each kernel row                 for v=1:kx  % index through each kernel element                    if(i>ky && i<y-ky && j>kx && j<y-kx)                    temp = neigh(u,v)*kr(u,v);                    accumulator = accumulator + temp;                    end                end            end            B(i,j) = accumulator;   %Set value of pixel in new image with convolution operation resultant        end    end    B=B(1+ky:y-ky,1+kx:x-kx);       % Remove image paddingend

 % Read images 1 and 2 im = imread('img1.png'); A = rgb2gray(im); A = double(A);    % Read KernelsKernel_1 = (1/9)*ones(3);Kernel_2 = (1/49)*ones(7);Kernel = Kernel_2;          % Set current kernel img_out = convolution(A,Kernel);   %Perform convolution on image and selected kernel img_out_filter = imfilter(A,Kernel,'same','conv'); %%Display output imagesfigure('color','w')subplot(1,3,1); imshow(A,[]); title('Original') subplot(1,3,2); imshow(img_out,[]); title('Custom Created Function')subplot(1,3,3); imshow(img_out_filter,[]); title('Matlab imfilter Function')