[Math] Why is the axiom of choice separated from the other axioms

axiom-of-choicemath-historyset-theorysoft-question

I don't know much about set theory or foundational mathematics, this question arose just out of curiosity. As far as I know, the widely accepted axioms of set theory is the Zermelo-Fraenkel axioms with the axiom of choice. But the last axiom seems to be the most special out of these axioms. A lot of theorems specifically mention that they depend on the axiom of choice. So, what is so special about this axiom?

I know that a lot of funny results occur when we assume the axiom of choice, such as the Banach-Tarski paradox. However, we are assuming the other ZF axioms at the same time. So why do we blame it to the axiom of choice, not the others? To me, the axiom of regularity is less convincing than the axiom of choice (though it's probably due to my lack of understanding).

Best Answer

This is a historical issue really.

Originally set theory was developed by Cantor and the well ordering principle was somewhat assumed in the background (e.g. Cantor's proof of the Cantor-Bernstein theorem was a corollary from the fact that every two cardinalities are comparable).

In 1904 Zermelo formulated the axiom of choice and proved its equivalence to the well ordering principle. He later formulated more axioms which described our intuition about sets, therefore removing the "naivity" from the Cantorian set theory. He did not add the axiom of foundations, nor the schema of replacement. Those were the result of Skolem and Fraenkel which were popularized by von Neumann.

The axiom of choice remained controversial, the thought that the continuum can be well-ordered was mind boggling and caused many people feel uneasy about this axiom. Further results like the Banach-Tarski paradox did not help to accept this axiom either.

Prior to set theory most mathematics was somewhat constructive in the sense that things were finitely generated or approximated by finitary means (e.g. limits of sequences). It requires quite the leap of faith to go from things you can pretty much write down to things which you cannot describe but only prove their existence. In this sense the axiom of choice augments the way we do mathematics by allowing us to discuss objects which we cannot describe in full.

It was questionable, therefore, whether this axiom is even consistent with the rest of the axioms of set theory. Gödel proved this consistency in the late 1940's while Cohen proved the consistency of its negation in the 1960's (it is important to remark that if we allow non-set elements to exist then Fraenkel already proved these things in the 1930's).

Nowadays it is considered normal to assume the axiom of choice, but there are natural situations in which one would like to remove it or find himself in universes where the axiom of choice does not hold. This makes questions like "How much choice is needed here?" important for these contexts.


Some things to read:

  1. Why worry about the axiom of choice? (MathOverflow)
  2. Advantage of accepting the axiom of choice
  3. Axiom of choice - to use or not to use
  4. Foundation for analysis without axiom of choice?
Related Question