[Math] Is the integral $\int_0^\infty \frac{\mathrm{d} x}{(1+x^2)(1+x^a)}$ equal for all $a \neq 0$

calculusdefinite integralsintegration

Let $a$ be a non-zero real number. Is it true that the value of $$\int\limits_0^\infty \frac{\mathrm{d} x}{(1+x^2)(1+x^a)}$$ is independent on $a$?

Best Answer

Let $\mathcal{I}(a)$ denote the integral. Then $$ \begin{eqnarray} \mathcal{I}(a) &=& \int_0^1 \frac{\mathrm{d} x}{(1+x^2)(1+x^a)} + \int_1^\infty \frac{\mathrm{d} y}{(1+y^2)(1+y^a)} \\ &\stackrel{y=1/x}{=}& \int_0^1 \frac{\mathrm{d} x}{(1+x^2)(1+x^a)} + \int_0^1 \frac{x^a \mathrm{d} x}{(1+x^2)(1+x^a)} \\ &=& \int_0^1 \frac{1+x^a}{(1+x^2)(1+x^a)} \mathrm{d} x = \int_0^1 \frac{1}{1+x^2} \mathrm{d} x = \frac{\pi}{4} \end{eqnarray} $$

Thus $\mathcal{I}(a) = \frac{\pi}{4}$ for all $a$. I do not see a need to require $a$ to be non-zero.

Related Question