Let $a_n$ be a sequence such that $a_1 >0$ and for all $n$ $a_{n+1}=a_n+ \frac{1}{a_n^3}$ then $\lim _\limits {n \to \infty}a_n=\infty$

real-analysissolution-verification

Let $a_n$ be a sequence such that $a_1 >0$ and for all $n$ $a_{n+1}=a_n+ \frac{1}{a_n^3}$ then $\lim _\limits {n \to \infty}a_n=\infty$


I am not sure how to formally prove this , the book says the statement is true.

I just tried to gather some information from what is given I do not know if it is mostly needed for example according to $a_{n+1}=a_n+ \frac{1}{a_n^3}$ we get that $a_{n+1}-a_n=\frac{1}{a_n^3}$ so the sequence is increasing

also we know that the limit of $a_n$ is equal to the limit of a moved sequence (sorry if this is the incorrect word) so $\lim _\limits {n \to \infty}a_n=\lim _\limits {n \to \infty}a_{n+1}$

and the only way to get this it is if I can get $\lim _\limits {n \to \infty}\frac {1}{a_n^3}=0$ and that is when $\lim _\limits {n \to \infty}a_n= \infty$

This was my approach , according to all that we get that $\lim _\limits {n \to \infty}a_{n+1}= \lim _\limits {n \to \infty}a_n+ \frac{1}{a_n^3}$ since $\lim _\limits {n \to \infty}a_n= \infty$
the result will be $\lim _\limits {n \to \infty}a_{n+1}= \lim _\limits {n \to \infty}a_n=\infty$

Is my way correct? is there a different approach?

Thank you for any tips and help

Best Answer

Squaring both sides, \begin{align*} a_{n+1}^2 = a_n^2 + 2\frac{a_n}{a_n^3} + \frac{1}{a_n^6} > a_n^2 + 2\frac{1}{a_n^2} \end{align*} and squaring again, \begin{align*} a_{n+1}^4 > a_n^4 + 4 + \frac{4}{a_n^4} > a_n^4 + 4 \end{align*} and so \begin{align*} a_{n+1}^4 = a_1^4 + \sum_{k=1}^{n}(a_{k+1}^4 - a_k^4) > 4n + a_1^4 \rightarrow \infty \end{align*}