If $f(f(x)) = x+1, f(x+1) = f(x) + 1$, is it true that $f(x) = x + 1/2$

calculusfunctional-equationsiterated-function-system

If $f(f(x)) = x+1, f(x+1) = f(x) + 1$, where $f: \Bbb R \rightarrow \Bbb R$ is real-analytic, bijective, monotonically increasing, is it true that $f(x) = x + 1/2$?

I have tried to represent $f(x)$ as power series in a neighborhood of arbitrary $x_{0}$ and $y_{0} = f(x_{0})$. It's obvious that we can choose such a neighborhood $U_{0}(x_{0})$ that it's image by $f$ is $U_{1}(y_{0})$. Then, we can try to find the power series of $f(f(x))$, which is equal to $x+1$. But I cannot see, how such an equation shows that $f(x) = x + 1/2$.

Best Answer

The answer is no. All that can be said is that $f$ is conjugate to the shift $x\mapsto x+1/2$. More precisely:
Theorem A real analytic function $\newcommand{\R}{{\mathbb R}}f:\R\to\R$ satisfies $f(f(x))=x+1$ for all real $x$ if and only if it can be written $$\tag{1}f(x)=h\left(h^{-1}(x)+\tfrac12\right)$$ where $h:\R\to\R$ is real analytic and satisfies $h(x+1)=h(x)+1$ and $h'(x)>0$ for all real $x$.
Remarks: 1. (1) is equivalent to $h^{-1}\circ f\circ h(x)=x+\frac12$, that is $h$ conjugates $f$ to the shift $x\mapsto x+\frac12$.
2. The Theorem is also valid for continuous functions instead of real analytic functions. The statement "$h'(x)>0$" has to be replaced by "$h$ strictly increasing".
3. An analogous theorem holds for real analytic $f$ satisfying $f^{\circ n}(x)=x+1$ where $f^{\circ n}$ denotes the repeated composition of $n$ copies of $f$.
Proof: The sufficieny of (1) had already been checked in previous answers or comments: $$f(f(x))=h(h^{-1}(x)+1)=h(h^{-1}(x))+1=x+1.$$ So let us prove the necessity as well. Recall from the comments to the question that $f(x+1)=f(x)+1$ for all $x$ because both expressions are equal to $f(f(f(x)))$ and that $f$ is necessarily bijective with inverse $f^{-1}(x)=f(x-1)=f(x)-1$. Since $f$ is continuous and bijective, it is also strictly monotonous. As $f(x+1)=f(x)+1$, it must be strictly increasing.

In order to motivate the construction, let us discuss the uniqueness of $h$ in (1), if it exists. We claim that $\tilde h=h\circ \phi$ with a strictly increasing real analytic $\phi:\R\to\R$ satisfying $\phi(x+\frac12)=\phi(x)+\frac12$ works as well as $h$. Indeed $$\tilde h(\tilde h^{-1}(x)+\tfrac12)=h(\phi(\tilde h^{-1}(x)+\tfrac12))=h(\phi(\tilde h^{-1}(x))+\tfrac12)=h(h^{-1}(x)+\tfrac12).$$ As $g(x)=h(x)-1$ is 1-periodic, it can be written $g(x)=u(x)+v(x)$ where $u(x)=(g(x+\frac12)+g(x))/2$ is $1/2$-periodic and $v(x)=(g(x)-g(x+\frac12))/2$ satisfies $v(x+\frac12)=-v(x)$. Hence $h=\psi+v$, where $\psi(x)=x+u(x)$ satisfies $\psi(x+\frac12)=\psi(x)+\frac12$. Observe that $\psi(x)=(h(x)+h(x+\frac12))/2$ also has a positive derivative and hence an inverse function $\psi^{-1}$. Going over to $\tilde h=h\circ \psi^{-1}$, we arrive at some $\tilde h$ also working in (1) but such that $\tilde v(x)=\tilde h(x)-x=v\circ \psi^{-1}(x)$ satisfies $\tilde v(x+\frac12)=-\tilde v(x)$.
In summary: If some $h$ with (1) exists then there also exists an $h$ satisfying additionally $h(x)=x+v(x)$ where $v(x+\frac12)=-v(x)$.

Now let a real analytic function $f:\R\to\R$ satisfying $f(f(x))=x+1$ be given. We are looking for some $h(x)=x+v(x)$ with $v(x+\frac12)=-v(x)$ satisfying $f(h(x))=h(x+\frac12)$ or equivalently $f(x+v(x))=x+\frac12-v(x)$ or, with $F(x)=x+f(x)$, $$F(x+v(x))=2x+\tfrac12.$$ This motivates our definition $$h(x)=x+v(x)=F^{-1}\left(2x+\tfrac12\right).$$ This is well defined because $F'(x)\geq1$ and it is well known that it defines a real analytic function. We find $h'(x)=2/F'(h(x))>0$ and, via $F(x+v(x))=2x+\frac12$, we obtain that $$\tag{2}f(x+v(x))=x+\tfrac12-v(x)\mbox{ for all }x.$$ We claim that $v(x+\frac12)=-v(x)$ which shows that $f(h(x))=h(x+\frac12)$ and $v$ is 1-periodic and thus completes the proof.
For a proof of the claim, (2) implies that $x+v(x)+1=f(f(x+v(x))=f(x+\frac12-v(x))$ and therefore, replacing $x$ by $x+\frac12$, we find $x+\tfrac32+v(x+\tfrac12)=f(x+1-v(x+\tfrac12))$and thus, using $f(x+1)=f(x)+1$, $$x+\tfrac12+v(x+\tfrac12)=f(x-v(x+\tfrac12)).$$ Hence $F(x-v(x+\frac12))=2x+\frac12=F(x+v(x))$ which implies $-v(x+\frac12)=v(x)$ as wanted.

Related Question