Find angle QTS.

anglegeometrytriangles

enter image description here

Given $PQ=PR, QT = 2SU$, $PS \parallel QR$ and $SU \perp QR$. $QT$ is angle bisector of $\angle PQR$. What is the size of $\angle QTS$?

What I have so far:
$\angle PQT=\angle RQT=\alpha$, $\angle QRP = \angle SPR = 2\alpha$,$\angle QPT = 180-4\alpha$.

I am unsure how to proceed.

Best Answer

enter image description here

Let add one point $O$ to construction, which is intersection of $SU$ and $PQ$.

$$\angle TPS=\angle PRQ=\angle PQR=\angle OPS \Rightarrow TS=OS\Rightarrow OT=2OS$$

Using intercept theorem:

$$\frac{PQ}{SU}=\frac{OP}{OS} \Rightarrow \frac{PQ}{QT}=\frac12 \frac{PQ}{SU}=\frac12\frac{OP}{OS}=\frac{OP}{OT}\Rightarrow \frac{PQ}{OP}=\frac{QT}{OT} \Rightarrow TP {\rm\ is\ bisector\ of\ }\angle QTO$$

Let $\angle QOT=\alpha$, then $\angle PTO=\alpha$, $\angle QTS=2\alpha$, $\angle QTU=180°-2\alpha$, $\angle UQT=2\alpha-90°$, $\angle OQT=2\alpha-90°$. Then in triangle $OQT$ sum of angles is $2\alpha+\alpha+2\alpha-90°=180°$, $5\alpha=270°$, $\alpha=54°$. $\angle QTS=2\alpha=108°$.

Related Question