Problem :
Let $a$, $b$ and $c$ be positive numbers. Prove that:
$$\frac{a^3}{2a^2+b^2}+\frac{b^3}{2b^2+c^2}+\frac{c^3}{2c^2+a^2}\geq\frac{a+b+c}{3}.$$
My strategy :
I introduce the function :
$$f\left(x\right)=\frac{x}{2+\frac{p^{2}\left(x+u\right)^{2}}{\left(x+k\right)^{2}}}$$
And :
$$b=\frac{a\left(a+u\right)p}{a+k},c=\frac{bp\left(b+u\right)}{b+k}$$
And :
Now the problem is :
$$f\left(a\right)+f\left(b\right)+\frac{c^{3}}{2c^{2}+a^{2}}-\frac{\left(a+b+c\right)}{3}\geq 0$$
Fact 1 :
It seems we can use directly Jensen's inequality as $f(x)$ is convex for $u\geq k>0$ and $p>0$ and $x>0$.
Now remains to show that it is positive or after a bit of algebra and using again Jensen's inequality .
$$g(a,u,k)=\frac{c^{3}}{2c^{2}+a^{2}}+2f\left(\frac{\left(a+b\right)}{2}\right)-\frac{\left(a+b+c\right)}{3}\geq 0 $$
Wich is not hard again .
By not hard I mean using Buffalo's way all the coefficient are positives (I use Geogebra) using rational number wich is sufficient to show the strategy .
Replacing by the differents constraints we have and $p=1$:
$$g(x,y+x+z,y+x)=z² x (8x² + 3x z + 8x y + z y + 2y²) (6144x⁹ + 6528x⁸ z + 27648x⁸ y + 3712x⁷ z² + 24192x⁷ z y + 55296x⁷ y² + 1920x⁶ z³ + 11488x⁶ z² y + 39072x⁶ z y² + 64512x⁶ y³ + 678x⁵ z⁴ + 5244x⁵ z³ y + 15360x⁵ z² y² + 35904x⁵ z y³ + 48384x⁵ y⁴ + 99x⁴ z⁵ + 1549x⁴ z⁴ y + 6144x⁴ z³ y² + 11536x⁴ z² y³ + 20520x⁴ z y⁴ + 24192x⁴ y⁵ + 174x³ z⁵ y + 1461x³ z⁴ y² + 3939x³ z³ y³ + 5272x³ z² y⁴ + 7464x³ z y⁵ + 8064x³ y⁶ + 119x² z⁵ y² + 700x² z⁴ y³ + 1449x² z³ y⁴ + 1470x² z² y⁵ + 1686x² z y⁶ + 1728x² y⁷ + 36x z⁵ y³ + 168x z⁴ y⁴ + 288x z³ y⁵ + 232x z² y⁶ + 216x z y⁷ + 216x y⁸ + 4z⁵ y⁴ + 16z⁴ y⁵ + 24z³ y⁶ + 16z² y⁷ + 12z y⁸ + 12y⁹) / (3 (2x + y) (4x² + x z + 4x y + y²) (192x⁴ + 112x³ z + 384x³ y + 27x² z² + 144x² z y + 288x² y² + 20x z² y + 60x z y² + 96x y³ + 4z² y² + 8z y³ + 12y⁴) (192x⁶ + 352x⁵ z + 576x⁵ y + 300x⁴ z² + 832x⁴ z y + 720x⁴ y² + 120x³ z³ + 540x³ z² y + 784x³ z y² + 480x³ y³ + 18x² z⁴ + 148x² z³ y + 363x² z² y² + 368x² z y³ + 180x² y⁴ + 12x z⁴ y + 60x z³ y² + 108x z² y³ + 86x z y⁴ + 36x y⁵ + 2z⁴ y² + 8z³ y³ + 12z² y⁴ + 8z y⁵ + 3y⁶))$$
Where $x=a$ and $k=x+y$ and $u=x+y+z$. The same approach works with $k\leq a \leq u$ and $k\leq u \leq a $
Edit 08/05/2022 :
Using :
$$b=\frac{a\left(a+u\right)p}{a+k},c=\frac{bp\left(v+u\right)}{v+k}$$
And following the same path we have taking Buffalo's way in this case Inequality $\sum\limits_{cyc}\frac{a^3}{13a^2+5b^2}\geq\frac{a+b+c}{18}$ :
$$h(1,1+x+y+z,1+x+y,1+x)=(2304x¹³ z + 23616x¹² y z + 7056x¹² z² + 72576x¹² z + 107136x¹¹ y² z + 67560x¹¹ y z² + 652032x¹¹ y z + 6000x¹¹ z³ + 246000x¹¹ z² + 930816x¹¹ z + 284832x¹⁰ y³ z + 280356x¹⁰ y² z² + 2597184x¹⁰ y² z + 60992x¹⁰ y z³ + 1997856x¹⁰ y z² + 7417152x¹⁰ y z + 2704x¹⁰ z⁴ + 319888x¹⁰ z³ + 3172224x¹⁰ z² + 6724224x¹⁰ z + 494064x⁹ y⁴ z + 668334x⁹ y³ z² + 6051456x⁹ y³ z + 248132x⁹ y² z³ + 7097820x⁹ y² z² + 26078976x⁹ y² z + 32388x⁹ y z⁴ + 2394408x⁹ y z³ + 22505424x⁹ y z² + 47508480x⁹ y z + 1372x⁹ z⁵ + 269912x⁹ z⁴ + 4502176x⁹ z³ + 21966240x⁹ z² + 31207680x⁹ z + 587844x⁸ y⁵ z + 1017642x⁸ y⁴ z² + 9154008x⁸ y⁴ z + 551028x⁸ y³ z³ + 14523852x⁸ y³ z² + 53257536x⁸ y³ z + 129716x⁸ y² z⁴ + 7669964x⁸ y² z³ + 69551484x⁸ y² z² + 146876544x⁸ y² z + 14360x⁸ y z⁵ + 1812792x⁸ y z⁴ + 28509176x⁸ y z³ + 136484256x⁸ y z² + 194316480x⁸ y z + 1196x⁸ z⁶ + 167596x⁸ z⁵ + 4103560x⁸ z⁴ + 30746720x⁸ z³ + 94671120x⁸ z² + 99533952x⁸ z + 489960x⁷ y⁶ z + 1036836x⁷ y⁵ z² + 9422352x⁷ y⁵ z + 749550x⁷ y⁴ z³ + 18937020x⁷ y⁴ z² + 69924384x⁷ y⁴ z + 262501x⁷ y³ z⁴ + 13828146x⁷ y³ z³ + 122895582x⁷ y³ z² + 260894592x⁷ y³ z + 48983x⁷ y² z⁵ + 5094138x⁷ y² z⁴ + 77310956x⁷ y² z³ + 365831892x⁷ y² z² + 523380096x⁷ y² z + 6920x⁷ y z⁶ + 965318x⁷ y z⁵ + 22666052x⁷ y z⁴ + 167291672x⁷ y z³ + 511618344x⁷ y z² + 540649728x⁷ y z + 580x⁷ z⁷ + 78556x⁷ z⁶ + 2670844x⁷ z⁵ + 27055560x⁷ z⁴ + 123971888x⁷ z³ + 273260208x⁷ z² + 226303488x⁷ z + 286236x⁶ y⁷ z + 717120x⁶ y⁶ z² + 6716088x⁶ y⁶ z + 654090x⁶ y⁵ z³ + 16408836x⁶ y⁵ z² + 61658604x⁶ y⁵ z + 307879x⁶ y⁴ z⁴ + 15468966x⁶ y⁴ z³ + 136874838x⁶ y⁴ z² + 293766840x⁶ y⁴ z + 81807x⁶ y³ z⁵ + 7852582x⁶ y³ z⁴ + 117420318x⁶ y³ z³ + 553384464x⁶ y³ z² + 798072480x⁶ y³ z + 15799x⁶ y² z⁶ + 2282992x⁶ y² z⁵ + 52614078x⁶ y² z⁴ + 385593924x⁶ y² z³ + 1175908752x⁶ y² z² + 1251208512x⁶ y² z + 2280x⁶ y z⁷ + 371498x⁶ y z⁶ + 12503806x⁶ y z⁵ + 126077456x⁶ y z⁴ + 576011592x⁶ y z³ + 1267996416x⁶ y z² + 1057070016x⁶ y z + 100x⁶ z⁸ + 26000x⁶ z⁷ + 1290726x⁶ z⁶ + 16530100x⁶ z⁵ + 99593192x⁶ z⁴ + 322437456x⁶ z³ + 548623200x⁶ z² + 373500288x⁶ z + 114912x⁵ y⁸ z + 332886x⁵ y⁷ z² + 3302064x⁵ y⁷ z + 368352x⁵ y⁶ z³ + 9540996x⁵ y⁶ z² + 36993168x⁵ y⁶ z + 218935x⁵ y⁵ z⁴ + 11122950x⁵ y⁵ z³ + 99764766x⁵ y⁵ z² + 218025216x⁵ y⁵ z + 75773x⁵ y⁴ z⁵ + 7272762x⁵ y⁴ z⁴ + 109496940x⁵ y⁴ z³ + 518395980x⁵ y⁴ z² + 756538560x⁵ y⁴ z + 18371x⁵ y³ z⁶ + 2882056x⁵ y³ z⁵ + 66749156x⁵ y³ z⁴ + 489993840x⁵ y³ z³ + 1496720400x⁵ y³ z² + 1606973184x⁵ y³ z + 3505x⁵ y² z⁷ + 707234x⁵ y² z⁶ + 24082810x⁵ y² z⁵ + 243463448x⁵ y² z⁴ + 1113468000x⁵ y² z³ + 2453860512x⁵ y² z² + 2061635328x⁵ y² z + 300x⁵ y z⁸ + 98944x⁵ y z⁷ + 4975689x⁵ y z⁶ + 64171304x⁵ y z⁵ + 388077504x⁵ y z⁴ + 1258735584x⁵ y z³ + 2145025632x⁵ y z² + 1471113216x⁵ y z + 5912x⁵ z⁸ + 464105x⁵ z⁷ + 7269410x⁵ z⁶ + 53855448x⁵ z⁵ + 226936192x⁵ z⁴ + 563958720x⁵ z³ + 778494912x⁵ z² + 449344512x⁵ z + 30204x⁴ y⁹ z + 99354x⁴ y⁸ z² + 1091016x⁴ y⁸ z + 129592x⁴ y⁷ z³ + 3659220x⁴ y⁷ z² + 14941656x⁴ y⁷ z + 93237x⁴ y⁶ z⁴ + 5127686x⁴ y⁶ z³ + 47744934x⁴ y⁶ z² + 107286480x⁴ y⁶ z + 39759x⁴ y⁵ z⁵ + 4142666x⁴ y⁵ z⁴ + 64503714x⁴ y⁵ z³ + 310075320x⁴ y⁵ z² + 460222560x⁴ y⁵ z + 11524x⁴ y⁴ z⁶ + 2099874x⁴ y⁴ z⁵ + 50290558x⁴ y⁴ z⁴ + 373661740x⁴ y⁴ z³ + 1149362280x⁴ y⁴ z² + 1248545088x⁴ y⁴ z + 2625x⁴ y³ z⁷ + 694066x⁴ y³ z⁶ + 24598222x⁴ y³ z⁵ + 251535744x⁴ y³ z⁴ + 1157003600x⁴ y³ z³ + 2559954048x⁴ y³ z² + 2170691712x⁴ y³ z + 325x⁴ y² z⁸ + 146372x⁴ y² z⁷ + 7679819x⁴ y² z⁶ + 100373076x⁴ y² z⁵ + 611277472x⁴ y² z⁴ + 1990878144x⁴ y² z³ + 3403224480x⁴ y² z² + 2352989952x⁴ y² z + 17816x⁴ y z⁸ + 1432847x⁴ y z⁷ + 22759252x⁴ y z⁶ + 170328888x⁴ y z⁵ + 722467040x⁴ y z⁴ + 1802806432x⁴ y z³ + 2496451968x⁴ y z² + 1452049920x⁴ y z + 980x⁴ z⁹ + 124093x⁴ z⁸ + 2301206x⁴ z⁷ + 20167372x⁴ z⁶ + 103625552x⁴ z⁵ + 334059360x⁴ z⁴ + 672075968x⁴ z³ + 779521920x⁴ z² + 390435840x⁴ z + 4680x³ y¹⁰ z + 17232x³ y⁹ z² + 228528x³ y⁹ z + 25918x³ y⁸ z³ + 879492x³ y⁸ z² + 3915216x³ y⁸ z + 21892x³ y⁷ z⁴ + 1454616x³ y⁷ z³ + 14598084x³ y⁷ z² + 34228224x³ y⁷ z + 11068x³ y⁶ z⁵ + 1414412x³ y⁶ z⁴ + 23707652x³ y⁶ z³ + 117449976x³ y⁶ z² + 178536960x³ y⁶ z + 3707x³ y⁵ z⁶ + 883074x³ y⁵ z⁵ + 22807146x³ y⁵ z⁴ + 173915344x³ y⁵ z³ + 542433360x³ y⁵ z² + 598316544x³ y⁵ z + 955x³ y⁴ z⁷ + 370508x³ y⁴ z⁶ + 14269816x³ y⁴ z⁵ + 149336500x³ y⁴ z⁴ + 694958640x³ y⁴ z³ + 1549246944x³ y⁴ z² + 1328334336x³ y⁴ z + 150x³ y³ z⁸ + 105148x³ y³ z⁷ + 6032332x³ y³ z⁶ + 80606448x³ y³ z⁵ + 496452560x³ y³ z⁴ + 1628139776x³ y³ z³ + 2797120704x³ y³ z² + 1951506432x³ y³ z + 19574x³ y² z⁸ + 1702720x³ y² z⁷ + 27598360x³ y² z⁶ + 209152704x³ y² z⁵ + 894463584x³ y² z⁴ + 2244279232x³ y² z³ + 3120739968x³ y² z² + 1829910528x³ y² z + 2210x³ y z⁹ + 296090x³ y z⁸ + 5579664x³ y z⁷ + 49565152x³ y z⁶ + 257446688x³ y z⁵ + 836379424x³ y z⁴ + 1691629824x³ y z³ + 1970095872x³ y z² + 994406400x³ y z + 100x³ z¹⁰ + 24258x³ z⁹ + 515084x³ z⁸ + 5174352x³ z⁷ + 31186016x³ z⁶ + 122367104x³ z⁵ + 319249472x³ z⁴ + 539479808x³ z³ + 539543040x³ z² + 238768128x³ z + 324x² y¹¹ z + 1320x² y¹⁰ z² + 26856x² y¹⁰ z + 2250x² y⁹ z³ + 118140x² y⁹ z² + 615564x² y⁹ z + 2180x² y⁸ z⁴ + 228544x² y⁸ z³ + 2660592x² y⁸ z² + 6673752x² y⁸ z + 1270x² y⁷ z⁵ + 263544x² y⁷ z⁴ + 5131396x² y⁷ z³ + 26824512x² y⁷ z² + 42209856x² y⁷ z + 479x² y⁶ z⁶ + 198286x² y⁶ z⁵ + 5975010x² y⁶ z⁴ + 47754616x² y⁶ z³ + 152511744x² y⁶ z² + 171690624x² y⁶ z + 135x² y⁵ z⁷ + 102090x² y⁵ z⁶ + 4637772x² y⁵ z⁵ + 50539064x² y⁵ z⁴ + 239869840x² y⁵ z³ + 541301376x² y⁵ z² + 470510208x² y⁵ z + 25x² y⁴ z⁸ + 36716x² y⁴ z⁷ + 2516704x² y⁴ z⁶ + 34836160x² y⁴ z⁵ + 218240760x² y⁴ z⁴ + 723315040x² y⁴ z³ + 1251909120x² y⁴ z² + 882517248x² y⁴ z + 9268x² y³ z⁸ + 965846x² y³ z⁷ + 16126672x² y³ z⁶ + 124192960x² y³ z⁵ + 536687040x² y³ z⁴ + 1356338368x² y³ z³ + 1896305664x² y³ z² + 1121624064x² y³ z + 1600x² y² z⁹ + 255608x² y² z⁸ + 4924692x² y² z⁷ + 44411376x² y² z⁶ + 233376480x² y² z⁵ + 764661728x² y² z⁴ + 1556063872x² y² z³ + 1820780544x² y² z² + 926318592x² y² z + 150x² y z¹⁰ + 42512x² y z⁹ + 912016x² y z⁸ + 9272728x² y z⁷ + 56584736x² y z⁶ + 224427712x² y z⁵ + 590348160x² y z⁴ + 1003555072x² y z³ + 1008319488x² y z² + 449620992x² y z + 3356x² z¹⁰ + 78624x² z⁹ + 875344x² z⁸ + 5990320x² z⁷ + 27506304x² z⁶ + 87395584x² z⁵ + 191718528x² z⁴ + 279523840x² z³ + 245870592x² z² + 97523712x² z + 1296x y¹¹ z + 6576x y¹⁰ z² + 49248x y¹⁰ z + 14928x y⁹ z³ + 248088x y⁹ z² + 699840x y⁹ z + 20360x y⁸ z⁴ + 569032x y⁸ z³ + 3281904x y⁸ z² + 5443200x y⁸ z + 18300x y⁷ z⁵ + 799428x y⁷ z⁴ + 6954880x y⁷ z³ + 23098752x y⁷ z² + 26749440x y⁷ z + 11356x y⁶ z⁶ + 762224x y⁶ z⁵ + 8911672x y⁶ z⁴ + 43668352x y⁶ z³ + 100429056x y⁶ z² + 88833024x y⁶ z + 4996x y⁵ z⁷ + 519220x y⁵ z⁶ + 7609488x y⁵ z⁵ + 48909392x y⁵ z⁴ + 164641792x y⁵ z³ + 288029952x y⁵ z² + 205535232x y⁵ z + 1598x y⁴ z⁸ + 258376x y⁴ z⁷ + 4510840x y⁴ z⁶ + 35485440x y⁴ z⁵ + 155430240x y⁴ z⁴ + 396557056x y⁴ z³ + 558383616x y⁴ z² + 333434880x y⁴ z + 370x y³ z⁹ + 93934x y³ z⁸ + 1867168x y³ z⁷ + 17134880x y³ z⁶ + 91211840x y³ z⁵ + 301739200x y³ z⁴ + 618440704x y³ z³ + 727676928x y³ z² + 373248000x y³ z + 50x y² z¹⁰ + 24186x y² z⁹ + 525252x y² z⁸ + 5401664x y² z⁷ + 33361280x y² z⁶ + 133743360x y² z⁵ + 354790016x y² z⁴ + 606976000x y² z³ + 612900864x y² z² + 275374080x y² z + 4041x y z¹⁰ + 92304x y z⁹ + 1024936x y z⁸ + 7068992x y z⁷ + 32816192x y z⁶ + 105355008x y z⁵ + 233051904x y z⁴ + 341929984x y z³ + 302241792x y z² + 120766464x y z + 345x z¹¹ + 7882x z¹⁰ + 90824x z⁹ + 674768x z⁸ + 3494528x z⁷ + 12981120x z⁶ + 34727936x z⁵ + 65841664x z⁴ + 84527104x z³ + 66416640x z² + 23887872x z + 1296y¹¹ z + 7872y¹⁰ z² + 28512y¹⁰ z + 22152y⁹ z³ + 157440y⁹ z² + 285120y⁹ z + 38576y⁸ z⁴ + 398736y⁸ z³ + 1416960y⁸ z² + 1710720y⁸ z + 46124y⁷ z⁵ + 617216y⁷ z⁴ + 3189888y⁷ z³ + 7557120y⁷ z² + 6842880y⁷ z + 39836y⁶ z⁶ + 645736y⁶ z⁵ + 4320512y⁶ z⁴ + 14886144y⁶ z³ + 26449920y⁶ z² + 19160064y⁶ z + 25502y⁵ z⁷ + 478032y⁵ z⁶ + 3874416y⁵ z⁵ + 17282048y⁵ z⁴ + 44658432y⁵ z³ + 63479808y⁵ z² + 38320128y⁵ z + 12272y⁴ z⁸ + 255020y⁴ z⁷ + 2390160y⁴ z⁶ + 12914720y⁴ z⁵ + 43205120y⁴ z⁴ + 89316864y⁴ z³ + 105799680y⁴ z² + 54743040y⁴ z + 4466y³ z⁹ + 98176y³ z⁸ + 1020080y³ z⁷ + 6373760y³ z⁶ + 25829440y³ z⁵ + 69128192y³ z⁴ + 119089152y³ z³ + 120913920y³ z² + 54743040y³ z + 1219y² z¹⁰ + 26796y² z⁹ + 294528y² z⁸ + 2040160y² z⁷ + 9560640y² z⁶ + 30995328y² z⁵ + 69128192y² z⁴ + 102076416y² z³ + 90685440y² z² + 36495360y² z + 235y z¹¹ + 4876y z¹⁰ + 53592y z⁹ + 392704y z⁸ + 2040160y z⁷ + 7648512y z⁶ + 20663552y z⁵ + 39501824y z⁴ + 51038208y z³ + 40304640y z² + 14598144y z + 25z¹² + 470z¹¹ + 4876z¹⁰ + 35728z⁹ + 196352z⁸ + 816064z⁷ + 2549504z⁶ + 5903872z⁵ + 9875456z⁴ + 11341824z³ + 8060928z² + 2654208z)$$
Where I only put the numerator and with the function $h(a,u,k,v)$
Question : Is my strategy correct ? If not can someone point out my mistakes ?
Thanks in advance .
Best Answer
I think your strategy is correct. Also, I expanded the expressions after substitution using Python and compared it to your expansion, and the two lists are equal, so at least you didn't make a typo.
Your reasoning overall seems sound to me.