Solved – Variance of a bounded random variable

measurement errorstandard deviationvariance

Suppose that a random variable has a lower and an upper bound [0,1]. How to compute the variance of such a variable?

Best Answer

You can prove Popoviciu's inequality as follows. Use the notation $m=\inf X$ and $M=\sup X$. Define a function $g$ by $$ g(t)=\mathbb{E}\left[\left(X-t\right)^2\right] \, . $$ Computing the derivative $g'$, and solving $$ g'(t) = -2\mathbb{E}[X] +2t=0 \, , $$ we find that $g$ achieves its minimum at $t=\mathbb{E}[X]$ (note that $g''>0$).

Now, consider the value of the function $g$ at the special point $t=\frac{M+m}{2}$. It must be the case that $$ \mathbb{Var}[X]=g(\mathbb{E}[X])\leq g\left(\frac{M+m}{2}\right) \, . $$ But $$ g\left(\frac{M+m}{2}\right) = \mathbb{E}\left[\left(X - \frac{M+m}{2}\right)^2 \right] = \frac{1}{4}\mathbb{E}\left[\left((X-m) + (X-M)\right)^2 \right] \, . $$ Since $X-m\geq 0$ and $X-M\leq 0$, we have $$ \left((X-m)+(X-M)\right)^2\leq\left((X-m)-(X-M)\right)^2=\left(M-m\right)^2 \, , $$ implying that $$ \frac{1}{4}\mathbb{E}\left[\left((X-m) + (X-M)\right)^2 \right] \leq \frac{1}{4}\mathbb{E}\left[\left((X-m) - (X-M)\right)^2 \right] = \frac{(M-m)^2}{4} \, . $$ Therefore, we proved Popoviciu's inequality $$ \mathbb{Var}[X]\leq \frac{(M-m)^2}{4} \, . $$

Related Question