Bayesian Shrinkage Estimation – Questions About Paper

bayesiangibbsmarkov-chain-montecarlomultinomial-distributionsampling

I am reading the paper Bayesian Shrinkage Estimation of the Relative Abundance of mRNA Transcripts Using SAGE, and I am trying to work out the calculations for the complete conditionals for the Gibbs scheme presented in Section 3.5 (the prior structure is described in Section 3.1).

I am confused about how to calculate the full joint probability model and how to derive $p(\lambda \mid X, …)$, $p(\pi^* \mid X, …)$, $p(q_A \mid X, …)$, and $p(q_S \mid X, …)$. Is the below expression for the full joint correct?

\begin{align*}p(\pi^*, q_A, q_S, \lambda, X) &\propto {(\pi^*)}^{\sum_{j=1}^{|A|} \lambda_j} (1-\pi^*)^{\sum_{j=|A| + 1}^{N} \lambda_j} \prod_{j=1}^{|A|} q_{A_j}^{\lambda_j} \prod_{j=|A|+1}^N q_{S_j}^{\lambda_j} \cdot \prod_{j = 1}^{|A|} q_{A_j}^{\theta_A – 1} \prod_{j = |A| + 1}^{N} q_{S_j}^{\theta_S – 1} \\ &\cdot \frac{1}{B(a_{\pi^*}, b_{\pi^*})} (\pi^*)^{a_{\pi^*} – 1}(1 – \pi^*)^{b_{\pi^*} – 1} \cdot P^{\lambda} (1 – P)^{1 – \lambda}\end{align*}

I'm not sure where to go from here to calculate $p(\lambda \mid X, …)$, so I'd appreciate any help. Thanks in advance!

Edit: I was thinking of defining $A_1 = \{j : \lambda_j = 1\}$ and $A_0 = \{j : \lambda_j = 0\}$ with $M_1 = |A_1|$ and $M_0 = N – M_1$. Then we assume WLOG that $\lambda_j = 1$ for $j = 1, …, M_1$ and $\lambda_j = 0$ for $j = M_1 + 1, …, M_1 + M_0$. Then would the joint be

\begin{align*}p(\pi^*, q_A, q_S, \lambda, X) &\propto {(\pi^*)}^{\sum_{j=1}^{M_1} \lambda_j} (1-\pi^*)^{\sum_{j=M_1 + 1}^{N} \lambda_j} \prod_{j=1}^{M_1} q_{A_j}^{\lambda_j} \prod_{j=M_1+1}^N q_{S_j}^{\lambda_j} \cdot \prod_{j = 1}^{M_1} q_{A_j}^{\theta_A – 1} \prod_{j = M_1 + 1}^{N} q_{S_j}^{\theta_S – 1} \\ &\cdot \frac{1}{B(a_{\pi^*}, b_{\pi^*})} (\pi^*)^{a_{\pi^*} – 1}(1 – \pi^*)^{b_{\pi^*} – 1} \cdot P^{\lambda} (1 – P)^{1 – \lambda}?\end{align*}

Edit 2: I am still stuck on calculating the conditional posterior for $\lambda$ and $\pi^*$. Would it make sense to evaluate the joint at $\lambda_j = 1$ and $\lambda_j = 0$? I realize that there is a factor to consider in $p(q_A) = Dir(q_A \mid a_\lambda,\ldots,a_\lambda)$ for $\lambda_j = \lambda$.

Best Answer

Define the index set $\mathcal{I}:=\{j: \lambda_j=1\}$. Then, the posterior becomes $$ \begin{align} p(\pi^*,\lambda,q_A,q_S\mid X)&\propto (\pi^*)^{|\mathcal{I}|}(1-\pi^*)^{N-|\mathcal{I}|}\prod_{j\in \mathcal{I}} q_{A_j}^{\lambda_j+\theta_A-1} \prod_{j \in \mathcal{I}^c} q_{S_j}^{1-\lambda_j +\theta_S-1} \\ &\times (\pi^*)^{a_\pi-1}(1-\pi^*)^{b_\pi-1} \,\prod_{j=1}^N P^{\lambda_j} (1-P)^{1-\lambda_j}, \end{align} $$ where $|\mathcal{I}|$ indicates the cardinality of $\mathcal{I}$. The prior for $\lambda_j$ doesn't make sense without the subscript $j$ so I changed that part accordingly. When deriving a full conditional, ignore the components that don't have the parameter of interest. For example, $$ p(\pi^*\mid -) \propto (\pi^*)^{|\mathcal{I}| + a_\pi-1}(1-\pi^*)^{N-|\mathcal{I}|+b_\pi-1} \sim \mathrm{Be}(a_\pi + |\mathcal{I}|, b_\pi + N - |\mathcal{I}|), $$ and $$ p(\lambda_j\mid - ) \propto (q_{A_j} P)^{\lambda_j}\times \{q_{S_j}(1-P)\}^{(1-\lambda_j)} \sim \mathrm{Bernoulli}(p^*), $$ where $p^* = \frac{q_{A_j}P}{q_{A_j}P+ q_{S_j}(1-P)}$, since the components aren't guaranteed to sum to one.

Related Question